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We investigate a control technique for spatially extended systems combining spatial filtering with a previ-
ously studied form of time-delay feedback. The scheme is naturally suited to real-time control of optical
systems. We apply the control scheme to a model of a transversely extended semiconductor laser in which a
desirable, coherent traveling-wave state exists, but is a member of a nowhere stable family. Our scheme
stabilizes this state and directs the system towards it from realistic, distant, and noisy initial conditions. As
confirmed by numerical simulation, a linear stability analysis about the controlled state accurately predicts
when the scheme is successful and illustrates some key features of the control including the individual merit of,
and interplay between, the spatial and temporal degrees of freedom in the d@it@83-651X97)02303-9

PACS numbeps): 05.45+b, 47.27.Rc, 42.55.Px, 42.65.Sf

I. INTRODUCTION dynamics of the active region may still be obtained by using
feedback designed for the traveling-wave solution of the in-
Nonlinear dynamical systems often possess periodic offinite, idealized system. In this case one might expect the
bits that have desirable properties but are unstable. The profeedback to become small, but not completely vanish.
lem of applying small perturbations to the system in such a For a system with an accessible dynamical filg,t),
way as to produce stable periodic behavior has receive@Ur control signaka(x,t) is derived from an infinite sum of
much attention recentljd]. This paper addresses the control Signals delayed in time by integer multiples of the period of
problem as it arises in a specific context: the stabilization ofhe state that is to be stabilized:
unstable traveling-wave states of spatially extended systems.

Though such states have a particularly simple structure, the -~
control problem is nontrivial. ealX,t) =7y A(x,t) = (1-R) 21 R ANX t=nT) |,
The general method introduced below may be applicable "~ 1)
to a wide variety of physical systems, but an entirely general
analysis of it is beyond the scope of this work. We have ) . . .
chosen to investigate in detail its application to two sets ofVherey is the gain of the feedback; is the period of the
model equations describing the dynamics of wide aperturd@rget state, and 9R<1 determines the relative weight
semiconductor lasers. Our results demonstrate that unstafilyen to states  farther in the past. The field
traveling-wave states can be effectively controlled in thesdn(X,t)=F ‘[f*"(k—ko) FLA(x,t)]] is the spatially filtered
systems and therefore have implications both for the generaersion of A. Here f(') is a filtering function applied in
theory of control of spatially extended systems and for thé-ourier space andA] is the spatial Fourier transform of
design of semiconductor lasers. A. The precise manner in which the spatial filtering is in-
For the purposes of this paper, controlling a system meanguded may vary; we have made a choice that corresponds
providing feedback that locks the system to one member of directly to an experimental arrangement described below.
possibly infinite family of unstable periodic orbits present in We takef(q) to be peaked around zero so that contributions
that system, thereby choosing a desired state from a larg@ A from wave numbers other than the desired wave number
variety of possibilities. The technological goal is to producek, are suppressed iA. We also takef(0)=1 so that the
a desirable behavior in a system by applying carefully chofeedback term vanishes identically when the system is in a
sen feedback that directs the system to the goal state amuire state of wave numbé&g, that is an unstable orbit of the
keeps it there. For many applications, it is desirable to designncontrolled system. Equatiofi) represents the enhance-
the feedback such that the magnitude of the control signahent of time-delay feedback of the form analyzed in R&f.
decreases as the system approaches the desired state andyiith spatial filtering of the type introduced in RéR].
the absence of noise, vanishes when the controlled behavior Control based on Ed1) is especially well suited to spa-
is a dynamical state of the uncontrolled system. It is alsdially extended states with a structure dominated by one Fou-
worthwhile to consider “controlling” a state that is only rier mode. Feedback occurs whenever there are components
approximately a true orbit of the system. An important ex-in the system due to undesired wave numbers or undesired
ample is the situation where a stress is applied to a large bditequencies. The temporal feedback is important both be-
finite transverse portion of a system. Useful results for thecause practical implementations of the spatially filtered feed-
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back necessarily involve time delays and because spatially
filtered feedback alone is sometimes not sufficient to stabi-
lize the desired state.

We emphasize that the control scheme investigated here is
a plausible candidate for implementation in experimental
systems. As in Ref[3], a form of time-delay feedback is
used that includes previous comparisons made between the
state and a time-delayed version in a way that is easy to (b)
implement because the feedback signal can be generated re-
cursively[4]. This is a generalization of a low-dimensional L,
control techniqgue known as extended time-delay autosy-
chronization [5], which is in turn a generalization of a L
scheme introduced by Pyragé§] and has been demon-
strated to work in low-dimensional electronic systelhk

Optical systems are of particular interest with respect to
control both because they offer excellent laboratories for LASER LENS FILTER LENS INTERFEROMETER
testing theoretical ideas and because important technological BOUNDARY
problems associated with them may be solved through con-
trol techniques. Wide aperture semiconductor lasers, with FIG. 1. (a) Geometry of a wide aperture lasér, is assumed to
their compact size and very large gain, are ideal candidatdse sufficiently small that only one mode dominates in yhdirec-
for high brightness coherent steerable laser souspially  tion. The large width_, gives rise to many transverse modes. The
and temporally coherentHowever, the pronounced asym- linear stability analysis in this paper is valid for arbitrarily large
metry in their gain and refractive index spectra leads to &x- The size ofL, determines the number of longitudinal modes
very strong nonlinear amplitude-phase coupling in the lasethat are relevant for the dynamicéh) One possible schematic
field. Consequently, wide aperture semiconductor lasers didmplementation of the feedback mechanism studied in this paper.
play uncontrolled dynamic intensity filamentati¢random The_ fet_edback signal is the field rt_aflected from_the_ front of the laser
beam steeringeven immediately beyond lasing threshold. cavity in the presence of an additional reflecting !nter_féla(.aele(_j
This behavior persists and becomes even more complicateNTERFEROMETER BOUNDARY”). The spatial filtering is
at higher current pumping levels. Moreover, the time scaleferformed by the two lenses with a filter placed at the focal plane of
involved in the laser dynamics lie in the nanosecond to pi-eaCh'
cosecond regime, ruling out any algorithm that requires in-
direct intervention in order to establish control. Time-delay One of the main results of the present paper is that the
feedback with real-time filtering in space and time is a natu-addition of spatial filtering to time-delay contrflising A,
ral candidate for all-optical control of these systems. rather thanA, in Eq. (1)] produces a highly robust control

To illustrate the power of spatially filtered, time delay scheme. In the context of the laser equations discussed be-
feedback, we analyze the important example of the laselow, a linear stability analysis of the infinite system shows
Swift-Hohenberg equations, which approximately describghat, in general, both the spatial filtering and the time delay
the dynamics of the optical field of a wide aperture semiconare important components of the scheme. For the models we
ductor laser with one transverse dimension. Results of linesstudy, numerical results also show that when a state is stable
stability analyses are used to guide the choice of controlvith feedback it is also highly attracting, so that linear sta-
parameters for numerical simulations, which reveal that théility analysis is predictive even far from the linear regime.
controlled state may be attained even when the initial condiSimulations of the model equations show that the feedback is
tions are far from the linear regime. Also, because semiconable to direct the system towards the desired state from a
ductor edge-emitting lasers typically run on multiple longi- distant initial condition and that spatial filtering is the domi-
tudinal modes, we study the case of a two-longitudinal-nant mechanism responsible for this behavior.
mode laser Swift-Hohenberg model. We find that the pres- Before proceeding to the detailed analysis of our scheme,
ence of a second mode introduces new features relevant e mention some related investigations. First, results of nu-
the control scheme, but that control is still possible. merical simulations of the application of our scheme with

Our primary motivation for studying this particular sys- R=0 to the control of traveling-wave solutions in the single-
tem is that the feedback signal of interest can be producelbngitudinal-mode semiconductor laser Swift-Hohenberg
using a Fabry-Ret interferometer containing a spatial filter. equations(discussed belowhave been reported elsewhere
The time delay in the feedback scheme corresponds to tH&]. There, the spatial filtering was shown to be extremely
round-trip transit time in the interferometer. The spatial fil- robust, rapidly suppressing the broadband noisy spatial spec-
tering can be accomplished by a focusing lens, whose focdfum of the free running unstable laser, in favor of the filtered
plane contains the far-field fluctuating output of the lasertransverse traveling-wave mode. The subsequent evolution
Placing a suitable aperture in the focal plane of the lens actowards a controlled state was observed to depend sensi-
as a narrow-band spatial filter. One example of a suitabléively on whether the system is infinitely extendédeal-
arrangement for generating the desired feedback is shown imed) or pumped over a finite transverse cross section. In the
Fig. 1. Our results therefore suggest a feasible approach former case, the system evolves to a pure nonlinear
the suppression of unwanted spatiotemporal fluctuations itraveling-wave mode of the isolated laser system, although at
real laser systems. higher stress the system typically spent time in a metastable
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dynamical state before reaching the desired traveling wave. P, 1) =p exp (kx— wt+ ¢), (4)
For finite transverse pumping, the system evolves to a mixed
traveling-wave solution of the joint laser-feedback system
and remains there. In this latter case, a finite amount of en-
ergy remains in the feedback loop.

Second, Luet al.[7] considered feedback constructed by
combining comparisons of the current state of the systerﬁ
both to a version delayed by the temporal period of the target

n,=p?/b, ®)

where ¢ is an arbitrary phase that will henceforth be as-
umed to be zero,

state and to versions shifted by the spatial period of the target p?= b[ r—1— 0-ak®\? (6)
state. Numerical integration showed that the control can di- 1+o '

rect the system towards, and stabilize, a pattern in a trans-

versely extended laser model, but the method does not ap- oQ+ak?+ aop?/b

pear to be a good candidate for all-optical implementation. w= 1t o . (7)

Finally, Battogtokh and Mikhailo¥8] considered the ef-
fect of feeding back a time-delayed signal constructed fro
the global average of a dynamical field, showing that stabl
uniform oscillatory states of the system with feedback exist®
for some choices of the delay time. In the scheme they an IVE.

lyze, the control signal does not represent a small perturba- Equation(2) for the envelope of the electric field contains
tion ’and the delay time is not tuned to the period of thed time-delay and spatial filtering control term of the form of
desired orbit Eq. (1), with the time delayr set to 27/ w, the period of the

desired traveling-wave state. The insertion of the feedback as
simply an additive term in this equation is an approximation
ll. SINGLE-LONGITUDINAL-MODE LASER of the real effect of the feedback, which actually consists of
SWIFT-HOHENBERG EQUATIONS an electric field applied at the front face of the laser cavity

We now treat the specific example of a recently deriveddue to reflections from the elements shown in Fig)1The
model of the transversely extended semiconductor laser, tH2in ¥ should be thought of as a phenomenological param-
semiconductor laser Swift-Hohenberg equatif@is extend- ~ €ter that characterizes the effect of this boundary term on the
ing the results of Ref[2]. The model assumes the cavity longitudinal mode in question. The optimal choice of the
geometry shown in Fig. & with L, and L, both small filter function f is not immediately clear. For now we take
enough that the dynamics is dominated by a single mode i#(d) 1o be a Gaussian of width, i.e., f(q) =exd —q?/T].
the y and z directions, butL, large. Denoting the AS explained below, the results are not sensitive to the pre-
x-dependent envelope of the electric field by the complexise choice qT. The case of a square filter function is also
field ¢ and the carrier density by the real figid the equa-  discussed briefly below.

ote thatp is real and that the traveling-wave solution
ases to exist when the right-hand side of &).is nega-

tions are To perform the linear stability analysis we write
P(X,1)=[1+B(x,t) ¢ andn(x,t)=[1+ C(x,t)]n, and ar-
(c+1)dp=o(r—1)yp+iaViy—icQy rive at the following linearized equations in the vicinity of a

traveling-wave solution:

__ 7 2\2, ;
A+ o2 QFaviiy—olltiangte,, L 1),B=—(2ak+4iakaQ - 4ia?5k?) VB
) +(ia—2a0Q +60a’k?) V°B—4i7a’kVv:B
__ 2 N R2
an=—bn+]y% ®) ~5a’V*B- (1+ia) —0C+ep, ®)

whereo andb are the decay rates of the electric field and
population inversion, respectively, normalized to the decay 9,C=b(B+B*—C), 9
rate of the polarizationr is the scaled pump rate is a
scaled diffusion constant) is the detuning between the
atomic and carrier frequencies, ard<O is a nonlinear

amplitude-phase couplingAll the coefficients in the equa- modes of the perturbation, Settingz(Bq,Bj; Cg), the

tion are rea). . : . .
L . three-dimensional vector of Fourier amplitudes at wave num-
The model is similar to the laser Swift-Hohenberg equa-, b

tions [10] for two-level lasers. The key difference in the berq, the equations can be written in the general form

semiconductor equations is the explicit inclusion of the d

term which derives from the strong asymmetry in the semi- —¢=Jé+Me,, (10)

conductor optical gain and refractive index spe¢tta,12. dt ¢

Other terms arising in the semiconductor version due to

spectral hole burning in the carrier distributions do not influ-wheree is given by the expression in E¢l), J is obtained

ence the results discussed here. from the coefficients of Eqs8) and (9), andM is deter-
With control turned off €,=0), Egs.(2) and (3) have  mined by which variables form the control signal and how

traveling-wave solutions that are always unstdii@: the control signal enters the equations. In the present case,

whereo=o/(1+ o). Following Ref.[3], we obtain a linear
system of ordinary differential equations for the Fourier



2122 BLEICH, HOCHHEISER, MOLONEY, AND SOCOLAR 55

1 00
L @
M=o 1 ol (11) ~ 0.03 a
000 g o
The factor by which a given eigenmode of the perturba- -0.03 W 1
tion grows during one period of the evolution of the con- : :
trolled system is called a Floquet multiplier. The time delay . 000 unstable | (b)
in the control term requires that the initial conditions for the §
evolution must specify the behavior over an entire 2 005 |
continuous-time interval of one period, so each spatial Fou- %
rier mode has an infinite number of eigenmodes and Floquet 4 o0 L
multipliers u; . Letting é0) represent th¢th eigenmode, we ol : m s

have, by definition,

() = . D
¢t 7)= e (). (12 FIG. 2. (a) Growth rates of perturbations of an uncontrolled

The set of Floquet multipliers for a perturbation with wave (7=0) traveling-wave solution of qus) and (9)_W'th k:_5 and
numberq determines that perturbation’s linear stability; if r=1.5 and parameter values=0.1,_9—_0.001,a—0.0_1,b—0.01,
g . . anda=—5. For eachg, Rg\]>0 implies exponential growth of
one or more multipliers havd;,uj|>1, the perturbation is the perturbation(b) Stable region in they-y plane of the same
unStabIe'. . . . traveling wave with control. The solid line is the stability boundary
Dr_opplng the subscripf qnd evaluating the geometric for R=0, 7=2x/w, andl'=0.25. Note that all modes are stable for
sum ine, Eq. (10) may be written v<—0.1. The dashed linésee the insgtcorresponds to théun-
1—f2(q),ufl physica) case ofr=0, R=0.
1-Rf(q)p ™

Perturbation Wave Number ¢

ME. (13)

d
qiéT It 7( case shown in Fig. ®), this occurs aty~—0.1. In this
model, there is no lower boundary to the stable region for
The values of the Floquet multipliers are determined by retraveling waves.
quiring consistency between this equation and the defining We find for this system that spatial filtering alone would
relation of Eq.(12). We obtain the following characteristic be sufficient to stabilize the traveling wave. The stability
equation for this modified eigenvalue problem: boundary obtained witr=0 andR=0, the dashed line in
Fig. 2(b), is nearly identical to the one with=27/w at
1-f2(q)ut largeq, but the time delay clearly has a significant effect at
1-R(qu Ml =1=0, g near zero. It is also important to note that implementation
(14) of a spatial filter with no time delay is not possible in fast
optical systems. The result that the introduction of a time
where the exponential represents the operator that advanceslay of one period does ndestroythe stability in the case
the linear system by one period As discussed in Refs. of the Gaussian filter is therefore significant.
[13,3], one can perform a numerical winding number calcu- In general, a given wave-number perturbation can be sta-
lation of g(« ) around the unit circle to obtain the number bilized either by the time delay feedback with no spatial
of roots satisfyingu~*|<1. Since there are no poles in the filtering or by the spatial filtering with no time delay. In each
unit disk, the system is linearly stable if and only if this case, however, there may be small bands of wave numbers
winding number vanishes. for which one or the other method fails. A given spatial filter
Results from the linear stability analysis predict that ourfails nearq=0 if there exist perturbations that are suffi-
control technique successfully stabilizes all traveling-waveciently unstabldor if f(q) is sufficiently close to unity For
solutions in the single-longitudinal-mode model. We presenty’'s at whichf(q)=1, as occurs for a finite band in the step
detailed results for a single-traveling-wave solution, forfunction case, the spatial filtering has no effect on the stabil-
k=5 andr=1.5, which is typical of all traveling waves we ity. The time-delay feedback alone fails for wave numbers
have studied(Values of the other parameters are given in thewhose frequency of oscillation is sufficiently close to an in-
caption) teger multiple of the frequency of the desired traveling wave.
Figure 2a) shows the growth rates of the modes of theCombining the spatial filter and the time delay renders the
uncontrolled system, which are obtained by finding the eisystem stable at afj.
genvalues of) in Eq. (10). There is one unstable mode for  The time delay is a crucial component for stability in the
perturbation wave numbers between zero antl2. With  two-mode system discussed below. In the single-mode sys-
control, usingR=0, we find that the traveling-wave state is tem it may also play an important rolefifq) is chosen to be
stable fory sufficiently negative. The solid line in Fig(l® a step function rather than a Gaussian.
indicates the boundary between which perturbation wave The predictions of several stability diagrams similar to
numbers are stable or unstable at a gigerThe controlled  Fig. 2(b) have been checked in detail by numerical simula-
traveling wave is stable at values ¢ffor which all wave tion. The numerics show that the traveling-wave states are
numbers are stable, i.e., where the shaded region contains atabilized with values ofy predicted by the linear analysis
entire horizontal line. For all traveling waves in this model, and that instabilities occur at the wave number predicted
there is a minimunjy| for which the state is stable. In the when|y| is too small.

J+y

Q(Ml)IluleXp[T
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tive. To begin to understand the possible effects of multiple
longitudinal modes, we study a two-mode model. This model
is a straightforward generalization of the two-level, one-
mode model derived in Ref10] to the situation in which
two longitudinal modes, with mode separatiof,2dominate
the dynamicq14]. With the addition of the semiconductor
a term discussed above, this model reads

454}

IS
[$)]
N

time (Periods of Traveling Wave)

-10 -5 0 5 10
x (Transverse)

(@)

g
- m(Q+A+aV2)2¢1—a(1+ia)mpl

—o(l+ia)ni,+ey,, (15

(o+1)d =0 (r—1)hp+iaV2ihr—iAhr—i Qi

time (Periods of Traveling Wave)

o .
_ (_Z(Q—AJraVz)zwz—U(lHa)mﬂz

1+0)
—o(l+ia)n* Yy +e,, (16)
0 200 400 600 din=—bn+|¢|*+ |, (17)
time (Pers of TW) x (Transverse)
4 “ don= b+ Y. (18

FIG. 3. Evolution of the single mode system with .
a,b,Q,0,a,r,k as in Fig. Za), and y=0.2. (a) Space-time plot of Note that the same control ter%z 6¢1+ €y, appears in
the phase of the fielgs in the uncontrolled system showing chaotic both the ¢, and ¢, equations with equal magnitude. This
fluctuations.(b) The growth of the magnitude of the desired mode Simple way to model the effect of the reinjection of the re-
as a function of time(c) Space-time plot of the phase ¢fin the  flected field into the laser cavity is used here for conve-
controlled system for the same run as shown(bh The lower nience. The present model is intended only to display the
region shows the dynamics when the system is first turned on. Aftequalitative features that arise when more than one mode is
a short period during which fluctuations grow rapidly, the feedbackrelevant.
suppresses all wave numbers other than the desired one. After a We are interested in the solution in which one longitudi-

transient time of approximately 500 periods of the desired orbit, thgyg] mode supports a traveling wave and the other is inactive:
system settles into the traveling-wave state. The upper portion

shows the system as it approaches the desired state, which would

appear as straight bands on this plot. V1= h=p explkx—w), 19
An important question is whether the linear stability n=n=p%b, (20

analysis is predictive of the behavior of the system even for

initial conditions that are not in the linear regime. Numerical ¥,=0, (21

integration of the model equations show that the spatially

filtered feedback is particularly effective in directing the sys- 7=0, (22)

tem to the desired state. As illustrated in Fig. 3, for param-

eters corresponding to a linearly stable controlled state, the . e

system is attracted to the desired state from a typical initia

condition. Though it is difficult to display the full behavior O+A—ak?\?

during the long transient, an investigation of the details re- pZZb[r_ S } (23

veals that, beginning from low amplitude noise of the type l+o

that would be expected when the laser is first turned on, the

system, depending on the parameter regime, may pass oQ+ak’—A+aop?lb

through several nearly stable states with the desired wave 0= 1+ o : (24)

number, but the incorrect frequency, before finally settling

on the one with the desired frequency. Preliminary investiThe complementary solution is obtained by interchanging the

gations of systems with time.—delay feedback alone .indicat%ubscripts of the fields and takidg— — A in the expresions
that more complicated behavior occurs beyond the linear re& . p and . Taking yg,=(1+B)i, =D
. 1~ ks 2= ks

ime. . . X
g n=(1+C)n,, and »=E, we obtain the linear equations for
IIl. TWO-LONGITUDINAL-MODE LASER the small fieldsB,D,C,E,

SWIFT-HOHENBERG EQUATIONS

. o (o+1)9,B=—(2ak+4diakoQ —4ia’ck®) VB
Semiconductor lasers of practical interest generally oper-

ate in regimes where many longitudinal modes may be ac- +(ia—2a0Q +67a’k?) V2B, (25)
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(o+1)8,D=[iaV?—2ik—o(Q—A+aV?)2+iak? . . :

+3(Q+A-ak?)?]D—o(1+ia)E*, 0.03
(26) 2 o0
&
=b(B+B*— 2
HE=—2bE+ p?D*. (28

Fourier transforming, we again obtain a general expres-
sion for the behavior of small differences of a perturbation
wave number from the controlled state. Letting be the

ol
3

[\ unstable

-0.05 1

stable

Feedback Gain vy

wave number in the transverse direction and 0.10 ¢ ]
¢&=(B,B*,D,D*,C,E,E*), we have ous b _
’ unstable
d L 1 1
ats = 0 5 10 15
dt§ Jé+Meg, (29

Perturbation Wave Number ¢

whereJ is the matrix of coefficients obtained directly from . . ,
Egs.(25—(28) and FIG. 4. Dispersion curves fofunstable traveling-wave solu-

tions in the two-mode model. The solidlashedl line represents
solutions in which only the favorefunfavored mode is excited.
The parameters are§=0.05, ¢=0.1, (1=0.001, a=0.01,

b=0.01, anda=—5.

case and because it may be a better representation of the
situation that arises in multimode systems.

Figure 5 illustrates the stabilization of the unfavored
mode (/1) with the parameters listed in the caption. Figure
5(a) shows the stability curves for the uncontrolled system,
clearly indicating the instability aj=0 that makes this case
] ] o qualitatively different from the single-mode case discussed
As in the case of the single-longitudinal-mode laser, a conghove. The spatial filter component in our control scheme is
dition of the form of Eq.(14) defines the Floquet multipliers jnsensitive to instabilities at or near=0 because the filter
of the system. _ N _must pass components of both and ¢, with this wave

We now describe the results of the linear stability analysis,ymper. The width of the functiof(q) used for the spatial
of the two-mode model. As in the single-mode model, eachjier will determine the range af that is passed. As a result
mode is always unstable to transverse fluctuations, but in thgs the ineffectiveness of the spatial filter over this range of
two-mode model it is possible for one mode to be unstable tgertyrhation wave number, the temporal component of the
the growth of the other as well. A straightforward stability control scheme must be relied on to stabilize these perturba-
analysis of theuncontrolledequations shows that for all pa- {jgns.
rameter choices botlt; or ¢, are marginally stable against  Tne stability diagrams of Figs.(5) and 6 demonstrates

transverse fluctuations q=0, but only one of the modes is hat the time-delay control is effective in controlling the
always stable against growth of the other mode. Which mode

is which depends upon the choice of the mode separation, the

desired wave number, and other parameters in the model. We 1.0 . .
will refer to a mode that is stabl@instabl¢ against growth

of other longitudinal modes aj,=0 as “favored” (“unfa-
vored”).

The dispersion curves for transverse waves in the two
modes have nearly the same functional form but are dis-
placed relative to each other approximately by the mode
spacing A. (See, for example, Fig. 4By choosing the
wave number for the spatial filter, one selects one traveling- 10 5 0 5 10
wave state from each of the two dispersion curves. Because Wave Number k
the frequencies of these two states are different, one can
choose the time delay so as to suppress fluctuations at the riG. 5. (a) Real parts of the eigenvalues of an uncontrolled
frequency of the undesired mode. Thus it is plausible to sup¢y=0) solution in whichy, is a traveling wave wittk=8 and
pose that the combination of the time delay and the spatigl=1.5, andy, is zero everywhere. The parameters are the same as
filter is capable of stabilizing either of the two longitudinal in Fig. 4. (b) Stable region of the same solution with control with
modes. We will focus on the stabilization of an unfavoredparameter®=0.5, 7=2/w, and'=0.25. Thetraveling wave is
mode both because it would appear to be the more difficulétable at allg for —0.13< y< —0.05.

(30

O O O O »r O Bk
O O O »r O+ O
O O O O »r O Bk
O O O »r O L O
o O O ©O o o o
o O O ©O OO o o
o O O O O o
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| | S 2} 12—~
0.00 - unstable b © =)
o ©
Ly teeesees = Unfavored S
.c ----- e ::
& 005 / , stable | 2 1 15
% 5 o
Q # s o
£ g e——o no time delay 8 ’ 1 3
b g c ‘Favored { ©
s ' T oR=0 =1 . 0
= 010 F / =——=R=.25 ]
——<R=35 0O 200 400 600 800
— 2R=15 Time (Periods of Traveling Wave)
. . (@)
0.00 0.25 0.50

Perturbation Wave Number ¢

FIG. 6. Detail from the left edge of the upper boundary of the
domain of control in Fig. &) shows the effect of varying. In the
case ofR=0, as with no time delay, the traveling-wave solution
cannot be controlled due to instabilities at sneplLarger values of
R do yield stable solutions for sufficiently negatiye

range of perturbation wave numbers that are not stabilized by
the spatial filter. Figure ) shows that with both time-delay
control (here with R=0.5) and the spatial filterwith

time (Periods of Traveling Wave)

I'=0.25) there is a range af that stabilizes the traveling- 12,
wave solution. Figure 6 shows that when time-delay control 6420246
is not present and also whéhis too small, there is no range x (Transverse a.u.)
of y that stabilizes the traveling-wave solution at all wave 3 (b)
numbers.

FIG. 7. Evolution of two mode system witab,Q,r,o,«, as in

. - . Fig. 4, withA=0.1,r=1.5,k=8, R=0.5, andy=0.1. (a) Space-
and is shown in Fig. ®), is the lower boundary of the stable time plot of the phase off in the controlled system. The lower

domain, whose origin lies in the off-diagonal elements of;qqion shows the dynamics when the system is first turned on. After
M. When the system is not exactly on the desired orbit, therg transient time of approximately 200 periods of the desired orbit,
is a finite amount of feedback generated. Because the desirgigk system settles into the traveling-wave stée.Magnitude of
mode has a much larger average magnitude than the othete favored modédashed lingand unfavored modésolid line) as
mode, the feedback signal is dominated by effects from the function of time for the same run as shown (. Note the
desired mode. This feedback is necessary to control the déxpanded scale at the right for the favored mode.

sired mode, but it also affects the other mode. When the . ) ] ) .
magnitude of this feedback becomes too large, as it must AS in the single-mode model, numerical simulations con-
when || is increased, these unwanted perturbations to thd™ the predictions of the linear analysis and show that the
undesired mode cause the state to go unstable. traveling-wave state can be obtained starting from a distant

The position of the lower boundary of the domain of con- Mitidl condition. Figure 7 shows the emergence of the de-

trol [Fi b 5(b)] is important because ?{[ determines the ran esired traveling wave from a low amplitude, noisy initial con-
9- P : 9%ition. After an initial transient, the system clearly settles

of gain that can be used to obtain control. If that range IShto the desired pure traveling wave
very small, it may be difficult to find an appropriajein an We have also observed the behavior of the system when
experiment. Even worse, if the lower boundary becomes S js chosen too small. Although the only unstable modes in
high that part of it reaches the lowest point of the UPPeTihis case are very close =0, we find that their growth
boundary, there is ng that can control the system. We find oo pjetely destroys the traveling wave. The system does not
that the position of the lower boundary is affected by severaf, o ey develop long-wavelength modulations of the desired
parameters. The lower boundary is raised when the pump,, e "Wwe therefore conclude that both the temporal and spa-

rater is raised and when the wave numikeis lowered. The (5| aspects of the feedback signal we have analyzed play
mode separatiod also plays an important role in the loca- ggsential roles in the success of the scheme.
tion of the lower boundary. For largéy, the lower boundary

is pushed down. In a system in whigtis the only adjustable
parameter i, A, andR fixed), we find that traveling waves
with wave numbers in a finite continuous band can be stabi- Our study of the dynamics of laser Swift-Hohenberg
lized. The highk boundary of the band is determined by the equations with time-delayed, spatially filtered feedback
condition that traveling waves exi@hatp must be regland  strongly suggests that stable lasing at a single transverse
the lowk boundary is the point at which there ceases to be avave number in wide aperture lasers is possible. A future
v that can control perturbations at all wave numbers. paper will report on studies of a more realistic model of field

A different feature that appears in the two-mode model

IV. CONCLUSION
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and carrier dynamics in a semiconductor system of the typéal filtering is a powerful technique that might be adapted to

shown in Fig. 1, where preliminary results are encouragingmany other types of physical systems. Its primary advantage

Though there are several nontrivial experimental issues ags that the desired traveling-wave state need not be available

sociated with the fabrication of such a device, we believen some external form for construction of the feedback sig-

that this is a promising direction for research and developnal. It is particularly suitable for optical systems, however,

ment. where the necessary manipulations of the signal can be per-
We have presented a theoretical approach to the analysisrmed with standard optical elements.

of this sort of feedback that appears to capture the relevant
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