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Controlling extended systems with spatially filtered, time-delayed feedback
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~Received 21 August 1996!

We investigate a control technique for spatially extended systems combining spatial filtering with a previ-
ously studied form of time-delay feedback. The scheme is naturally suited to real-time control of optical
systems. We apply the control scheme to a model of a transversely extended semiconductor laser in which a
desirable, coherent traveling-wave state exists, but is a member of a nowhere stable family. Our scheme
stabilizes this state and directs the system towards it from realistic, distant, and noisy initial conditions. As
confirmed by numerical simulation, a linear stability analysis about the controlled state accurately predicts
when the scheme is successful and illustrates some key features of the control including the individual merit of,
and interplay between, the spatial and temporal degrees of freedom in the control.@S1063-651X~97!02303-9#

PACS number~s!: 05.45.1b, 47.27.Rc, 42.55.Px, 42.65.Sf
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I. INTRODUCTION

Nonlinear dynamical systems often possess periodic
bits that have desirable properties but are unstable. The p
lem of applying small perturbations to the system in suc
way as to produce stable periodic behavior has rece
much attention recently@1#. This paper addresses the contr
problem as it arises in a specific context: the stabilization
unstable traveling-wave states of spatially extended syste
Though such states have a particularly simple structure,
control problem is nontrivial.

The general method introduced below may be applica
to a wide variety of physical systems, but an entirely gene
analysis of it is beyond the scope of this work. We ha
chosen to investigate in detail its application to two sets
model equations describing the dynamics of wide aper
semiconductor lasers. Our results demonstrate that uns
traveling-wave states can be effectively controlled in th
systems and therefore have implications both for the gen
theory of control of spatially extended systems and for
design of semiconductor lasers.

For the purposes of this paper, controlling a system me
providing feedback that locks the system to one member
possibly infinite family of unstable periodic orbits present
that system, thereby choosing a desired state from a l
variety of possibilities. The technological goal is to produ
a desirable behavior in a system by applying carefully c
sen feedback that directs the system to the goal state
keeps it there. For many applications, it is desirable to des
the feedback such that the magnitude of the control sig
decreases as the system approaches the desired state a
the absence of noise, vanishes when the controlled beha
is a dynamical state of the uncontrolled system. It is a
worthwhile to consider ‘‘controlling’’ a state that is onl
approximately a true orbit of the system. An important e
ample is the situation where a stress is applied to a large
finite transverse portion of a system. Useful results for
551063-651X/97/55~3!/2119~8!/$10.00
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dynamics of the active region may still be obtained by us
feedback designed for the traveling-wave solution of the
finite, idealized system. In this case one might expect
feedback to become small, but not completely vanish.

For a system with an accessible dynamical fieldA(x,t),
our control signaleA(x,t) is derived from an infinite sum o
signals delayed in time by integer multiples of the period
the state that is to be stabilized:

eA~x,t !5gFA~x,t !2~12R! (
n51

`

Rn21Ãn~x,t2nt!G ,
~1!

whereg is the gain of the feedback,t is the period of the
target state, and 0<R,1 determines the relative weigh
given to states farther in the past. The fie
Ãn(x,t)5F21

†f 2n(k2kc)F@A(x,t)#‡ is the spatially filtered
version of A. Here f ( ) is a filtering function applied in
Fourier space andF@A# is the spatial Fourier transform o
A. The precise manner in which the spatial filtering is i
cluded may vary; we have made a choice that correspo
directly to an experimental arrangement described bel
We takef (q) to be peaked around zero so that contributio
to A from wave numbers other than the desired wave num
kc are suppressed inÃ. We also takef (0)51 so that the
feedback term vanishes identically when the system is i
pure state of wave numberkc that is an unstable orbit of the
uncontrolled system. Equation~1! represents the enhance
ment of time-delay feedback of the form analyzed in Ref.@3#
with spatial filtering of the type introduced in Ref.@2#.

Control based on Eq.~1! is especially well suited to spa
tially extended states with a structure dominated by one F
rier mode. Feedback occurs whenever there are compon
in the system due to undesired wave numbers or undes
frequencies. The temporal feedback is important both
cause practical implementations of the spatially filtered fe
2119 © 1997 The American Physical Society
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back necessarily involve time delays and because spat
filtered feedback alone is sometimes not sufficient to sta
lize the desired state.

We emphasize that the control scheme investigated he
a plausible candidate for implementation in experimen
systems. As in Ref.@3#, a form of time-delay feedback i
used that includes previous comparisons made between
state and a time-delayed version in a way that is easy
implement because the feedback signal can be generate
cursively @4#. This is a generalization of a low-dimension
control technique known as extended time-delay auto
chronization @5#, which is in turn a generalization of
scheme introduced by Pyragas@6# and has been demon
strated to work in low-dimensional electronic systems@5#.

Optical systems are of particular interest with respec
control both because they offer excellent laboratories
testing theoretical ideas and because important technolo
problems associated with them may be solved through c
trol techniques. Wide aperture semiconductor lasers, w
their compact size and very large gain, are ideal candid
for high brightness coherent steerable laser sources~spatially
and temporally coherent!. However, the pronounced asym
metry in their gain and refractive index spectra leads t
very strong nonlinear amplitude-phase coupling in the la
field. Consequently, wide aperture semiconductor lasers
play uncontrolled dynamic intensity filamentation~random
beam steering! even immediately beyond lasing thresho
This behavior persists and becomes even more complic
at higher current pumping levels. Moreover, the time sca
involved in the laser dynamics lie in the nanosecond to
cosecond regime, ruling out any algorithm that requires
direct intervention in order to establish control. Time-del
feedback with real-time filtering in space and time is a na
ral candidate for all-optical control of these systems.

To illustrate the power of spatially filtered, time dela
feedback, we analyze the important example of the la
Swift-Hohenberg equations, which approximately descr
the dynamics of the optical field of a wide aperture semic
ductor laser with one transverse dimension. Results of lin
stability analyses are used to guide the choice of con
parameters for numerical simulations, which reveal that
controlled state may be attained even when the initial con
tions are far from the linear regime. Also, because semic
ductor edge-emitting lasers typically run on multiple long
tudinal modes, we study the case of a two-longitudin
mode laser Swift-Hohenberg model. We find that the pr
ence of a second mode introduces new features releva
the control scheme, but that control is still possible.

Our primary motivation for studying this particular sy
tem is that the feedback signal of interest can be produ
using a Fabry-Pe´rot interferometer containing a spatial filte
The time delay in the feedback scheme corresponds to
round-trip transit time in the interferometer. The spatial
tering can be accomplished by a focusing lens, whose fo
plane contains the far-field fluctuating output of the las
Placing a suitable aperture in the focal plane of the lens
as a narrow-band spatial filter. One example of a suita
arrangement for generating the desired feedback is show
Fig. 1. Our results therefore suggest a feasible approac
the suppression of unwanted spatiotemporal fluctuation
real laser systems.
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One of the main results of the present paper is that
addition of spatial filtering to time-delay control@using Ãn
rather thanAn in Eq. ~1!# produces a highly robust contro
scheme. In the context of the laser equations discussed
low, a linear stability analysis of the infinite system show
that, in general, both the spatial filtering and the time de
are important components of the scheme. For the models
study, numerical results also show that when a state is st
with feedback it is also highly attracting, so that linear s
bility analysis is predictive even far from the linear regim
Simulations of the model equations show that the feedbac
able to direct the system towards the desired state fro
distant initial condition and that spatial filtering is the dom
nant mechanism responsible for this behavior.

Before proceeding to the detailed analysis of our sche
we mention some related investigations. First, results of
merical simulations of the application of our scheme w
R50 to the control of traveling-wave solutions in the singl
longitudinal-mode semiconductor laser Swift-Hohenbe
equations~discussed below! have been reported elsewhe
@2#. There, the spatial filtering was shown to be extrem
robust, rapidly suppressing the broadband noisy spatial s
trum of the free running unstable laser, in favor of the filter
transverse traveling-wave mode. The subsequent evolu
towards a controlled state was observed to depend se
tively on whether the system is infinitely extended~ideal-
ized! or pumped over a finite transverse cross section. In
former case, the system evolves to a pure nonlin
traveling-wave mode of the isolated laser system, althoug
higher stress the system typically spent time in a metast

FIG. 1. ~a! Geometry of a wide aperture laser.Ly is assumed to
be sufficiently small that only one mode dominates in they direc-
tion. The large widthLx gives rise to many transverse modes. T
linear stability analysis in this paper is valid for arbitrarily larg
Lx . The size ofLz determines the number of longitudinal mod
that are relevant for the dynamics.~b! One possible schemati
implementation of the feedback mechanism studied in this pa
The feedback signal is the field reflected from the front of the la
cavity in the presence of an additional reflecting interface~labeled
‘‘INTERFEROMETER BOUNDARY’’!. The spatial filtering is
performed by the two lenses with a filter placed at the focal plane
each.
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55 2121CONTROLLING EXTENDED SYSTEMS WITH SPATIALLY . . .
dynamical state before reaching the desired traveling wa
For finite transverse pumping, the system evolves to a mi
traveling-wave solution of the joint laser-feedback syst
and remains there. In this latter case, a finite amount of
ergy remains in the feedback loop.

Second, Luet al. @7# considered feedback constructed
combining comparisons of the current state of the sys
both to a version delayed by the temporal period of the ta
state and to versions shifted by the spatial period of the ta
state. Numerical integration showed that the control can
rect the system towards, and stabilize, a pattern in a tr
versely extended laser model, but the method does not
pear to be a good candidate for all-optical implementatio

Finally, Battogtokh and Mikhailov@8# considered the ef-
fect of feeding back a time-delayed signal constructed fr
the global average of a dynamical field, showing that sta
uniform oscillatory states of the system with feedback ex
for some choices of the delay time. In the scheme they a
lyze, the control signal does not represent a small pertu
tion and the delay time is not tuned to the period of t
desired orbit.

II. SINGLE-LONGITUDINAL-MODE LASER
SWIFT-HOHENBERG EQUATIONS

We now treat the specific example of a recently deriv
model of the transversely extended semiconductor laser
semiconductor laser Swift-Hohenberg equations@9#, extend-
ing the results of Ref.@2#. The model assumes the cavi
geometry shown in Fig. 1~a! with Ly and Lz both small
enough that the dynamics is dominated by a single mod
the y and z directions, but Lx large. Denoting the
x-dependent envelope of the electric field by the comp
field c and the carrier density by the real fieldn, the equa-
tions are

~s11!] tc5s~r21!c1 ia¹2c2 isVc

2
s

~11s!2
~V1a¹2!2c2s~11 ia!nc1ec ,

~2!

] tn52bn1ucu2, ~3!

wheres andb are the decay rates of the electric field a
population inversion, respectively, normalized to the de
rate of the polarization,r is the scaled pump rate,a is a
scaled diffusion constant,V is the detuning between th
atomic and carrier frequencies, anda,0 is a nonlinear
amplitude-phase coupling.~All the coefficients in the equa
tion are real.!

The model is similar to the laser Swift-Hohenberg equ
tions @10# for two-level lasers. The key difference in th
semiconductor equations is the explicit inclusion of thea
term which derives from the strong asymmetry in the se
conductor optical gain and refractive index spectra@11,12#.
Other terms arising in the semiconductor version due
spectral hole burning in the carrier distributions do not infl
ence the results discussed here.

With control turned off (ec50), Eqs.~2! and ~3! have
traveling-wave solutions that are always unstable@10#:
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ck~x,t !5r expi ~kx2vt1f!, ~4!

nk5r2/b, ~5!

wheref is an arbitrary phase that will henceforth be a
sumed to be zero,

r25bF r212S V2ak2

11s D 2G , ~6!

v5
sV1ak21asr2/b

11s
. ~7!

Note that r is real and that the traveling-wave solutio
ceases to exist when the right-hand side of Eq.~6! is nega-
tive.

Equation~2! for the envelope of the electric field contain
a time-delay and spatial filtering control term of the form
Eq. ~1!, with the time delayt set to 2p/v, the period of the
desired traveling-wave state. The insertion of the feedbac
simply an additive term in this equation is an approximati
of the real effect of the feedback, which actually consists
an electric field applied at the front face of the laser cav
due to reflections from the elements shown in Fig. 1~b!. The
gain g should be thought of as a phenomenological para
eter that characterizes the effect of this boundary term on
longitudinal mode in question. The optimal choice of t
filter function f is not immediately clear. For now we tak
f (q) to be a Gaussian of widthG, i.e., f (q)5exp@2q2/G2#.
As explained below, the results are not sensitive to the p
cise choice ofG. The case of a square filter function is als
discussed briefly below.

To perform the linear stability analysis we writ
c(x,t)5@11B(x,t)#ck andn(x,t)5@11C(x,t)#nk and ar-
rive at the following linearized equations in the vicinity of
traveling-wave solution:

~s11!] tB52~2ak14iaks̃V24ia2s̃k3!¹B

1~ ia22as̃V16s̃a2k2!¹2B24i s̃a2k¹3B

2s̃a2¹4B2~11 ia!
R2

b
sC1eB , ~8!

] tC5b~B1B*2C!, ~9!

wheres̃[s/(11s)2. Following Ref.@3#, we obtain a linear
system of ordinary differential equations for the Four
modes of the perturbation. Settingj5(Bq ,Bq* ,Cq), the
three-dimensional vector of Fourier amplitudes at wave nu
berq, the equations can be written in the general form

d

dt
j5Jj1Mej , ~10!

wheree is given by the expression in Eq.~1!, J is obtained
from the coefficients of Eqs.~8! and ~9!, andM is deter-
mined by which variables form the control signal and ho
the control signal enters the equations. In the present ca
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2122 55BLEICH, HOCHHEISER, MOLONEY, AND SOCOLAR
M5S 1 0 0

0 1 0

0 0 0
D . ~11!

The factor by which a given eigenmode of the perturb
tion grows during one period of the evolution of the co
trolled system is called a Floquet multiplier. The time del
in the control term requires that the initial conditions for t
evolution must specify the behavior over an ent
continuous-time interval of one period, so each spatial F
rier mode has an infinite number of eigenmodes and Floq
multipliersm j . Letting j ( j ) represent thej th eigenmode, we
have, by definition,

j~ j !~ t1t!5m jj
~ j !~ t !. ~12!

The set of Floquet multipliers for a perturbation with wa
numberq determines that perturbation’s linear stability;
one or more multipliers haveum j u.1, the perturbation is
unstable.

Dropping the subscriptj and evaluating the geometri
sum ine, Eq. ~10! may be written

d

dt
j5Jj1gS 12 f 2~q!m21

12Rf2~q!m21DMj. ~13!

The values of the Floquet multipliers are determined by
quiring consistency between this equation and the defin
relation of Eq.~12!. We obtain the following characteristi
equation for this modified eigenvalue problem:

g~m21!5Um21expH tF J1gS 12 f 2~q!m21

12Rf2~q!m21DM G J 21U50,

~14!

where the exponential represents the operator that adva
the linear system by one periodt. As discussed in Refs
@13,3#, one can perform a numerical winding number calc
lation of g(m21) around the unit circle to obtain the numb
of roots satisfyingum21u,1. Since there are no poles in th
unit disk, the system is linearly stable if and only if th
winding number vanishes.

Results from the linear stability analysis predict that o
control technique successfully stabilizes all traveling-wa
solutions in the single-longitudinal-mode model. We pres
detailed results for a single-traveling-wave solution,
k55 andr51.5, which is typical of all traveling waves w
have studied.~Values of the other parameters are given in
caption.!

Figure 2~a! shows the growth rates of the modes of t
uncontrolled system, which are obtained by finding the
genvalues ofJ in Eq. ~10!. There is one unstable mode fo
perturbation wave numbers between zero and;12. With
control, usingR50, we find that the traveling-wave state
stable forg sufficiently negative. The solid line in Fig. 2~b!
indicates the boundary between which perturbation w
numbers are stable or unstable at a giveng. The controlled
traveling wave is stable at values ofg for which all wave
numbers are stable, i.e., where the shaded region contain
entire horizontal line. For all traveling waves in this mod
there is a minimumugu for which the state is stable. In th
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case shown in Fig. 2~b!, this occurs atg;20.1. In this
model, there is no lower boundary to the stable region
traveling waves.

We find for this system that spatial filtering alone wou
be sufficient to stabilize the traveling wave. The stabil
boundary obtained witht50 andR50, the dashed line in
Fig. 2~b!, is nearly identical to the one witht52p/v at
largeq, but the time delay clearly has a significant effect
q near zero. It is also important to note that implementat
of a spatial filter with no time delay is not possible in fa
optical systems. The result that the introduction of a tim
delay of one period does notdestroythe stability in the case
of the Gaussian filter is therefore significant.

In general, a given wave-number perturbation can be
bilized either by the time delay feedback with no spati
filtering or by the spatial filtering with no time delay. In eac
case, however, there may be small bands of wave num
for which one or the other method fails. A given spatial filt
fails nearq50 if there exist perturbations that are suf
ciently unstable@or if f (q) is sufficiently close to unity#. For
q’s at which f (q)51, as occurs for a finite band in the ste
function case, the spatial filtering has no effect on the sta
ity. The time-delay feedback alone fails for wave numbe
whose frequency of oscillation is sufficiently close to an
teger multiple of the frequency of the desired traveling wa
Combining the spatial filter and the time delay renders
system stable at allq.

The time delay is a crucial component for stability in th
two-mode system discussed below. In the single-mode
tem it may also play an important role iff (q) is chosen to be
a step function rather than a Gaussian.

The predictions of several stability diagrams similar
Fig. 2~b! have been checked in detail by numerical simu
tion. The numerics show that the traveling-wave states
stabilized with values ofg predicted by the linear analysi
and that instabilities occur at the wave number predic
when ugu is too small.

FIG. 2. ~a! Growth rates of perturbations of an uncontrolle
(g50) traveling-wave solution of Eqs.~8! and ~9! with k55 and
r51.5 and parameter valuess50.1,V50.001,a50.01,b50.01,
anda525. For eachq, Re@l#.0 implies exponential growth of
the perturbation.~b! Stable region in theq-g plane of the same
traveling wave with control. The solid line is the stability bounda
for R50, t52p/v, andG50.25. Note that all modes are stable f
g,20.1. The dashed line~see the inset! corresponds to the~un-
physical! case oft50, R50.
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55 2123CONTROLLING EXTENDED SYSTEMS WITH SPATIALLY . . .
An important question is whether the linear stabil
analysis is predictive of the behavior of the system even
initial conditions that are not in the linear regime. Numeric
integration of the model equations show that the spati
filtered feedback is particularly effective in directing the sy
tem to the desired state. As illustrated in Fig. 3, for para
eters corresponding to a linearly stable controlled state,
system is attracted to the desired state from a typical in
condition. Though it is difficult to display the full behavio
during the long transient, an investigation of the details
veals that, beginning from low amplitude noise of the ty
that would be expected when the laser is first turned on,
system, depending on the parameter regime, may
through several nearly stable states with the desired w
number, but the incorrect frequency, before finally settl
on the one with the desired frequency. Preliminary inve
gations of systems with time-delay feedback alone indic
that more complicated behavior occurs beyond the linear
gime.

III. TWO-LONGITUDINAL-MODE LASER
SWIFT-HOHENBERG EQUATIONS

Semiconductor lasers of practical interest generally op
ate in regimes where many longitudinal modes may be

FIG. 3. Evolution of the single mode system wi
a,b,V,s,a,r ,k as in Fig. 2~a!, andg50.2. ~a! Space-time plot of
the phase of the fieldc in the uncontrolled system showing chaot
fluctuations.~b! The growth of the magnitude of the desired mo
as a function of time.~c! Space-time plot of the phase ofc in the
controlled system for the same run as shown in~b!. The lower
region shows the dynamics when the system is first turned on. A
a short period during which fluctuations grow rapidly, the feedba
suppresses all wave numbers other than the desired one. Af
transient time of approximately 500 periods of the desired orbit,
system settles into the traveling-wave state. The upper por
shows the system as it approaches the desired state, which w
appear as straight bands on this plot.
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tive. To begin to understand the possible effects of multi
longitudinal modes, we study a two-mode model. This mo
is a straightforward generalization of the two-level, on
mode model derived in Ref.@10# to the situation in which
two longitudinal modes, with mode separation 2D, dominate
the dynamics@14#. With the addition of the semiconducto
a term discussed above, this model reads

~s11!] tc15s~r21!c11 ia¹2c11 iDc12 isVc1

2
s

~11s!2
~V1D1a¹2!2c12s~11 ia!nc1

2s~11 ia!hc21ec , ~15!

~s11!] tc25s~r21!c21 ia¹2c22 iDc22 isVc2

2
s

~11s!2
~V2D1a¹2!2c22s~11 ia!nc2

2s~11 ia!h*c11ec , ~16!

] tn52bn1uc1u21uc2u2, ~17!

] th52bh1c1c2* . ~18!

Note that the same control termec[ec1
1ec2

appears in

both thec1 and c2 equations with equal magnitude. Th
simple way to model the effect of the reinjection of the r
flected field into the laser cavity is used here for conv
nience. The present model is intended only to display
qualitative features that arise when more than one mod
relevant.

We are interested in the solution in which one longitu
nal mode supports a traveling wave and the other is inact

c15ck[r expi ~kx2wt!, ~19!

n5nk[r2/b, ~20!

c250, ~21!

h50, ~22!

where

r25bF r212S V1D2ak2

11s D 2G , ~23!

v5
sV1ak22D1asr2/b

11s
. ~24!

The complementary solution is obtained by interchanging
subscripts of the fields and takingD→2D in the expresions
for r and v. Taking c15(11B)ck , c25Dck ,
n5(11C)nk , andh5E, we obtain the linear equations fo
the small fieldsB,D,C,E,

~s11!] tB52~2ak14iaks̃V24ia2s̃k3!¹B

1~ ia22as̃V16s̃a2k2!¹2B, ~25!
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~s11!] tD5@ ia¹222ik2s̃~V2D1a¹2!21 iak2

1s̃~V1D2ak2!2#D2s~11 ia!E* ,

~26!

] tC5b~B1B*2C!, ~27!

] tE522bE1r2D* . ~28!

Fourier transforming, we again obtain a general expr
sion for the behavior of small differences of a perturbat
wave number from the controlled state. Lettingqx be the
wave number in the transverse direction a
j5(B,B* ,D,D* ,C,E,E* ), we have

d

dt
j5Jj1Mej , ~29!

whereJ is the matrix of coefficients obtained directly from
Eqs.~25!–~28! and

M5S 1 0 1 0 0 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

D . ~30!

As in the case of the single-longitudinal-mode laser, a c
dition of the form of Eq.~14! defines the Floquet multiplier
of the system.

We now describe the results of the linear stability analy
of the two-mode model. As in the single-mode model, ea
mode is always unstable to transverse fluctuations, but in
two-mode model it is possible for one mode to be unstabl
the growth of the other as well. A straightforward stabili
analysis of theuncontrolledequations shows that for all pa
rameter choices bothc1 or c2 are marginally stable agains
transverse fluctuations atqx50, but only one of the modes i
always stable against growth of the other mode. Which m
is which depends upon the choice of the mode separation
desired wave number, and other parameters in the model
will refer to a mode that is stable~unstable! against growth
of other longitudinal modes atqx50 as ‘‘favored’’ ~‘‘unfa-
vored’’!.

The dispersion curves for transverse waves in the
modes have nearly the same functional form but are
placed relative to each other approximately by the mo
spacing 2D. ~See, for example, Fig. 4.! By choosing the
wave number for the spatial filter, one selects one traveli
wave state from each of the two dispersion curves. Beca
the frequencies of these two states are different, one
choose the time delay so as to suppress fluctuations a
frequency of the undesired mode. Thus it is plausible to s
pose that the combination of the time delay and the spa
filter is capable of stabilizing either of the two longitudin
modes. We will focus on the stabilization of an unfavor
mode both because it would appear to be the more diffi
s-
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case and because it may be a better representation o
situation that arises in multimode systems.

Figure 5 illustrates the stabilization of the unfavor
mode (c1) with the parameters listed in the caption. Figu
5~a! shows the stability curves for the uncontrolled syste
clearly indicating the instability atq50 that makes this cas
qualitatively different from the single-mode case discuss
above. The spatial filter component in our control schem
insensitive to instabilities at or nearq50 because the filter
must pass components of bothc1 and c2 with this wave
number. The width of the functionf (q) used for the spatia
filter will determine the range ofq that is passed. As a resu
of the ineffectiveness of the spatial filter over this range
perturbation wave number, the temporal component of
control scheme must be relied on to stabilize these pertu
tions.

The stability diagrams of Figs. 5~b! and 6 demonstrate
that the time-delay control is effective in controlling th

FIG. 4. Dispersion curves for~unstable! traveling-wave solu-
tions in the two-mode model. The solid~dashed! line represents
solutions in which only the favored~unfavored! mode is excited.
The parameters ared50.05, s50.1, V50.001, a50.01,
b50.01, anda525.

FIG. 5. ~a! Real parts of the eigenvalues of an uncontroll
(g50) solution in whichc2 is a traveling wave withk58 and
r51.5, andc1 is zero everywhere. The parameters are the sam
in Fig. 4. ~b! Stable region of the same solution with control wi
parametersR50.5,t52p/v, andG50.25. Thetraveling wave is
stable at allq for 20.13,g,20.05.
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range of perturbation wave numbers that are not stabilized
the spatial filter. Figure 5~b! shows that with both time-dela
control ~here with R50.5) and the spatial filter~with
G50.25) there is a range ofg that stabilizes the traveling
wave solution. Figure 6 shows that when time-delay con
is not present and also whenR is too small, there is no rang
of g that stabilizes the traveling-wave solution at all wa
numbers.

A different feature that appears in the two-mode mod
and is shown in Fig. 5~b!, is the lower boundary of the stabl
domain, whose origin lies in the off-diagonal elements
M . When the system is not exactly on the desired orbit, th
is a finite amount of feedback generated. Because the de
mode has a much larger average magnitude than the o
mode, the feedback signal is dominated by effects from
desired mode. This feedback is necessary to control the
sired mode, but it also affects the other mode. When
magnitude of this feedback becomes too large, as it m
when ugu is increased, these unwanted perturbations to
undesired mode cause the state to go unstable.

The position of the lower boundary of the domain of co
trol @Fig. 5~b!# is important because it determines the ran
of gain that can be used to obtain control. If that range
very small, it may be difficult to find an appropriateg in an
experiment. Even worse, if the lower boundary becomes
high that part of it reaches the lowest point of the upp
boundary, there is nog that can control the system. We fin
that the position of the lower boundary is affected by seve
parameters. The lower boundary is raised when the pu
rater is raised and when the wave numberk is lowered. The
mode separationD also plays an important role in the loca
tion of the lower boundary. For largerD, the lower boundary
is pushed down. In a system in whichg is the only adjustable
parameter (r , D, andR fixed!, we find that traveling waves
with wave numbers in a finite continuous band can be st
lized. The high-k boundary of the band is determined by t
condition that traveling waves exist~thatr must be real! and
the low-k boundary is the point at which there ceases to b
g that can control perturbations at all wave numbers.

FIG. 6. Detail from the left edge of the upper boundary of t
domain of control in Fig. 5~b! shows the effect of varyingR. In the
case ofR50, as with no time delay, the traveling-wave solutio
cannot be controlled due to instabilities at smallq. Larger values of
R do yield stable solutions for sufficiently negativeg.
by
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As in the single-mode model, numerical simulations co
firm the predictions of the linear analysis and show that
traveling-wave state can be obtained starting from a dis
initial condition. Figure 7 shows the emergence of the d
sired traveling wave from a low amplitude, noisy initial co
dition. After an initial transient, the system clearly settl
into the desired pure traveling wave.

We have also observed the behavior of the system w
R is chosen too small. Although the only unstable modes
this case are very close toq50, we find that their growth
completely destroys the traveling wave. The system does
merely develop long-wavelength modulations of the desi
wave. We therefore conclude that both the temporal and s
tial aspects of the feedback signal we have analyzed p
essential roles in the success of the scheme.

IV. CONCLUSION

Our study of the dynamics of laser Swift-Hohenbe
equations with time-delayed, spatially filtered feedba
strongly suggests that stable lasing at a single transv
wave number in wide aperture lasers is possible. A fut
paper will report on studies of a more realistic model of fie

FIG. 7. Evolution of two mode system witha,b,V,r ,s,a, as in
Fig. 4, withD50.1, r51.5, k58, R50.5, andg50.1. ~a! Space-
time plot of the phase ofc in the controlled system. The lowe
region shows the dynamics when the system is first turned on. A
a transient time of approximately 200 periods of the desired or
the system settles into the traveling-wave state.~b! Magnitude of
the favored mode~dashed line! and unfavored mode~solid line! as
a function of time for the same run as shown in~b!. Note the
expanded scale at the right for the favored mode.
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and carrier dynamics in a semiconductor system of the t
shown in Fig. 1, where preliminary results are encouragi
Though there are several nontrivial experimental issues
sociated with the fabrication of such a device, we belie
that this is a promising direction for research and devel
ment.

We have presented a theoretical approach to the ana
of this sort of feedback that appears to capture the rele
features of the dynamics. The linear stability analysis p
sented here is a straightforward extension of some of pr
ous work on stabilizing traveling waves in the compl
Ginzburg-Landau equation. In the present case, however
desired state seems to be a global attractor, which give
considerably more confidence in its potential for practi
implementation.

Finally, we would like to emphasize that the gene
method of applying time-delay feedback combined with s
ud
ica
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sis
nt
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tial filtering is a powerful technique that might be adapted
many other types of physical systems. Its primary advant
is that the desired traveling-wave state need not be avail
in some external form for construction of the feedback s
nal. It is particularly suitable for optical systems, howev
where the necessary manipulations of the signal can be
formed with standard optical elements.
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